等和线及其应用¶
约 364 个字 预计阅读时间 1 分钟
1 三点共线、等和线的定义¶
-
三点共线定理: 已知 \(\vec{PA}\), \(\vec{PB}\) 为平面内不共线的两个向量,设 \(\vec{PC} = {x} \vec{PA} + {y} \vec{PB}\),则三点共线的充要条件为 \({x} + {y} = {1}\).
-
等和线: 在向量起点相同的前提下,所有以与两向量终点所在的直线平行的直线上的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”.
\({eg.}\) 如图所示,直线\({DE} \parallel {AB}\),\({C}\)为直线\({DE}\)上任一点,设 \(\vec{PC} = {x} \vec{PA}+ {y} \vec{PB}\) (\({x}, {y} \in \mathbb{R}\)).
\({(1)}\) 当直线\({DE}\)经过点\({P}\)时.
-
这时\({PC = lAB - lPA}\),所以\({x = l, y = -l}\).
-
所以 \({x} + {y} = l - l = {0}\).
\({(2)}\) 当直线\({DE}\)不经过点\({P}\)时,如图,直线\({PC}\)与直线\({AB}\)的交点记为\({F}\).
-
由三点共线结论可得: \({PF=lPA+mPB}\),且\({l + m = 1}\).
-
设\({PC = k PF}\),则\({PC = klPA + kmPB}\),所以\({x = kl, y = km}\).
-
所以\({x + y = kl + km = k(l + m) = k}\).
综上所述,\({x + y = kl + km = k}\). 且\({k}\)由\({PD = k PB}\),或\({PB = kPA}\)决定.
2 等和线的性质¶
-
当等和线恰为直线\({AB}\)时,\({k = 1}\)(即三点共线).
-
当等和线在点\({P}\)和直线\({AB}\)之间时,\({k \in (0,1)}\).
-
当直线\({AB}\)在点\({P}\)和等和线之间时,\({k \in (1, +\infty)}\).
-
当等和线过\({P}\)点时,\({k = 0}\).
-
当两条等和线关于\({P}\)点对称时,则\({k}\)互为相反数.